A rank 18 Waring decomposition of $sM_{\langle 3\rangle}$ with 432 symmetries
نویسنده
چکیده
The recent discovery that the exponent of matrix multiplication is determined by the rank of the symmetrized matrix multiplication tensor has invigorated interest in better understanding symmetrized matrix multiplication. I present an explicit rank 18 Waring decomposition of $sM_{\langle 3\rangle}$ and describe its symmetry group.
منابع مشابه
Power Sum Decompositions of Defining Equations of Reflection Arrangements
We determine the Waring rank and a Waring decomposition of the fundamental skew invariant of any complex reflection group whose highest degree is a regular number. This includes all irreducible real reflection groups. Given a homogeneous polynomial f of degree d, the Waring rank of f , denoted r(f), is the smallest positive integer r such that there exist linear forms l1, . . . , lr with f = l ...
متن کاملDecomposing multivariate polynomials with structured low-rank matrix completion
We are focused on numerical methods for decomposing a multivariate polynomial as a sum of univariate polynomials in linear forms. The main tool is the recent result on correspondence between the Waring rank of a homogeneous polynomial and the rank of a partially known quasi-Hankel matrix constructed from the coefficients of the polynomial. Based on this correspondence, we show that the original...
متن کاملGeometric lower bounds for generalized ranks
We revisit a geometric lower bound for Waring rank of polynomials (symmetric rank of symmetric tensors) of [LT10] and generalize it to a lower bound for rank with respect to arbitrary varieties, improving the bound given by the “non-Abelian” catalecticants recently introduced by Landsberg and Ottaviani. This is applied to give lower bounds for ranks of multihomogeneous polynomials (partially sy...
متن کاملThe geometry of rank decompositions of matrix multiplication II: $3\times 3$ matrices
This is the second in a series of papers on rank decompositions of the matrix multiplication tensor. We present new rank $23$ decompositions for the $3\times 3$ matrix multiplication tensor $M_{\langle 3\rangle}$. All our decompositions have symmetry groups that include the standard cyclic permutation of factors but otherwise exhibit a range of behavior. One of them has 11 cubes as summands and...
متن کاملExamples of non-quasicommutative semigroups decomposed into unions of groups
Decomposability of an algebraic structure into the union of its sub-structures goes back to G. Scorza's Theorem of 1926 for groups. An analogue of this theorem for rings has been recently studied by A. Lucchini in 2012. On the study of this problem for non-group semigroups, the first attempt is due to Clifford's work of 1961 for the regular semigroups. Since then, N.P. Mukherjee in 1972 studied...
متن کامل